Stereo Reconstruction and Contrast Restoration in Daytime Fog

نویسندگان

  • Laurent Caraffa
  • Jean-Philippe Tarel
چکیده

Stereo reconstruction serves many outdoor applications, and thus sometimes faces foggy weather. The quality of the reconstruction by state of the art algorithms is then degraded as contrast is reduced with the distance because of scattering. However, as shown by defogging algorithms from a single image, fog provides an extra depth cue in the gray level of far away objects. Our idea is thus to take advantage of both stereo and atmospheric veil depth cues to achieve better stereo reconstructions in foggy weather. To our knowledge, this subject has never been investigated earlier by the computer vision community. We thus propose a Markov Random Field model of the stereo reconstruction and defogging problem which can be optimized iteratively using the αexpansion algorithm. Outputs are a dense disparity map and an image where contrast is restored. The proposed model is evaluated on synthetic images. This evaluation shows that the proposed method achieves very good results on both stereo reconstruction and defogging compared to standard stereo reconstruction and single image defogging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Space Detection for Autonomous Navigation in Daytime Foggy Weather

Free space detection is a primary task in autonomous navigation. Unfortunately, classical approaches have di culties in adverse weather conditions, in particular in daytime fog. In this paper, a solution is proposed thanks to a contrast restoration approach. Knowing the density of fog, the method restores the contrast of the road and, at the same time, detect the vertical objects. Indeed, these...

متن کامل

Artificial Perception under Adverse Conditions: the Case of the Visibility Range

_____________________________________________________________________ Abstract Many factors can alter the quality of the signal resulting from an optical sensor mounted onboard an automotive vehicle. To be able to detect and quantify these degraded operation conditions while relying only on the signals resulting from sensors themselves is a challenge for the future driver assistances. In this p...

متن کامل

Photometric Stereo in Participating Media Considering Shape-Dependent Forward Scatter

Images captured in participating media such as murky water, fog, or smoke are degraded by scattered light. Thus, the use of traditional three-dimensional (3D) reconstruction techniques in such environments is difficult. In this paper, we propose a photometric stereo method for participating media. The proposed method differs from previous studies with respect to modeling shape-dependent forward...

متن کامل

3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework

Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the i...

متن کامل

A New Approach to Fog Detection Using Seviri and Modis Data

Meteosat 8 SEVIRI with its good spectral, spatial and temporal resolutions provides an excellent basis for the monitoring and nowcasting of fog. Based on this the present study outlines a method for fog detection using SEVIRI data, with algorithms for both, night and daytime. The night algorithm is ported from NOAA AVHRR and relies on brightness temperature differences between the 10.8 and 3.9 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012